中国科学院大学MBA教育管理中心 【"SEM管理科学“青年学者论坛】齐志泉:Learning from Label Proportions with Generative Adversarial Networks(12月10日) - 中国科学院大学MBA教育管理中心

【"SEM管理科学“青年学者论坛】齐志泉:Learning from Label Proportions with Generative Adversarial Networks(12月10日)

  • 日期:2021-12-02

 

讲座题目:Learning from Label Proportions with Generative Adversarial Networks

 

主讲人:齐志泉副研究员  中国科学院虚拟经济与数据科学研究中心 

 

讲座时间:2021年12月10日(周五)14:00-15:30

 

讲座地点:中国科学院大学中关村校区教学楼S406;腾讯会议ID:489 999 758

 

内容摘要:In this paper, we leverage generative adversarial networks (GANs) to derive an effective algorithm LLP-GAN for learning from label proportions (LLP), where only the bag-level proportional information in labels is available. Endowed with end-to-end structure, LLP-GAN performs approximation in the light of an adversarial learning mechanism, without imposing restricted assumptions on distribution. Accordingly, we can directly induce the final instance-level classifier upon the discriminator. Under mild assumptions, we give the explicit generative representation and prove the global optimality for LLP-GAN. Additionally, compared with existing methods, our work empowers LLP solver with capable scalability inheriting from deep models. Several experiments on benchmark datasets demonstrate vivid advantages of the proposed approach.

 

主讲人简介:齐志泉,中国科学院虚拟经济与数据科学研究中心副研究员。长期从事机器学习方法及应用方面研究。 在国内外主流期刊上(如:IEEE Trans. Neural Networks and Learning、IEEE Trans. Image Processing 、  IEEE Trans. Cybernetics、IEEE Trans. Intelligent Transportation Systems、 Neural Networks、Pattern Recognition发表SCI文章30余篇,国际会议(如:NeurlPS、AAAI、 IJCAI在内的CCF, A类国际顶会等)10余篇。 Google学术引用2000余次。